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Abstract 
Food safety remains a concern worldwide, with annually millions of consumers vulnerable to 
food borne illnesses caused by various hazards. In this report we focus on mycotoxins, a group of 
chemical hazards with both chronic and acute health impacts. Mycotoxins are secondary fungal 
metabolites which are primarily produced by Fusarium spp., Aspergillus spp. and Penicillium spp. 
in various foods. The behavior of the fungi and the production of mycotoxins is dependent on 
environmental, agronomical, and geographical factors. These factors can be used to predict 
fungal growth and mycotoxin contamination in foods with modeling techniques and the relevant 
input data. This study aimed to identify the latest development in the field of predictive modeling 
of mycotoxins in feed and food crops at harvest, and input data used. A literature review was 
performed using the databases Scopus and Web of Science, with the aim to create an overview 
of existing mycotoxin prediction models. From the 190 hits, 26 records were used in the following 
step. This step is the data extraction and organization, where the records are read systematically, 
and 12 key characteristics are extracted. Most of the records focused on grains, with only three 
of the 26 looking at other foods, of which only one looked at tomatoes. Most of the predictive 
models are empirical and some of the most recent studies employed machine learning 
techniques as well. The top five most used input variables are temperature, relative humidity, 
preceding crop, rainfall and location. From the data extraction, four major themes emerged: data 
types and prediction, modeling and machine learning, model and data integration and fungal 
(Fusarium spp.) behavior. These themes collectively shape the overview of the current mycotoxin 
prediction models available. There is a strong emphasis on the need for integration of data and 
model types, climate change awareness and adaptation and the expansion of current research. 
The major advice is to conduct more research towards tomatoes, as well as to integrate modeling 
techniques and input variables. 

Overview and objectives 
This report is part of the Food SafeR, a Horizon Europe funded project. 

The objective of the specific work package (WP3): “Chemical Risks Emergence” to extend the 
available tools and methods for combatting chemical hazards that can pose a human risk in 
Europe. Within WP3, several smaller goals are set which work in synchronicity. This includes 
studying secondary metabolites from plants and fungi via horizon scanning and mass 
spectrometric screening, advancing smartphone-based sensing and diagnostic tools for 
pyrrolizidine alkaloids, degradation of furans via innovative food processing techniques and big 
data machine learning prediction of mycotoxin and plant toxin occurrence. This report is part of 
the advancement of prediction tools for mycotoxin and plant toxin emergence (Task 3.1). The 
research objective of this report (deliverable 3.1) is creating an overview of the currently 
available prediction models for fungal infection and mycotoxin production in grains and 
tomatoes.  
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Introduction 
 
Food safety 
Every year, millions of consumers are at risk of illnesses caused by food safety hazards (World 
Health Organization, 2015). These hazards can be biological, chemical and physical (World Health 
Organization & Nations, 2006). Chemical food safety hazards can cause serious food borne 
illnesses and bring the safety of food and trust in the food system in jeopardy. One of the main 
group of chemical hazards are mycotoxins and plant toxins, which are both natural toxins 
occurrent in arable crops.  

Mycotoxin and fungal species 
Mycotoxins are secondary fungal metabolites produced by filamentous fungi, which are harmful 
to humans and animals (Medina et al., 2017). The prominent fungi for mycotoxin production are 
Fusarium spp., Aspergillus spp. and Penicillium spp. species. These fungal species can infiltrate 
the food chain by contaminating plants or by developing on finished products. Here they can 
produce mycotoxins, the most common and commercially important being Aflatoxin (AF), 
ochratoxins (OTA), fumonisins, trichothecenes (TH), patulin (PAT), citrinin (CIT), and zearalenone 
(ZEA) (El-Sayed et al., 2022). Some of the fungal species can produce more than one type of 
mycotoxin (Wang, Liu, et al., 2022), and at the same time, some of these mycotoxins can be 
different fungal species Mycotoxins are the most toxic chemical agents found in food and feed, 
they can affect various organs and cause acute or chronic poisoning (Yin et al., 2018). Table 1 - 
adapted from El-Sayed et al., 2022 - present an overview of the mycotoxins, fungal species and 
major foods they can contaminate.  
 
Table 1. An overview of major mycotoxins, their corresponding generating fungal species and major food groups 
they are commonly found in. Table is adapted from El-Sayed et al., 2022. 

Mycotoxins Genus/species Major Foods 
Aflatoxin Aspergillus flavus Cereals, oilseeds, coconut 

A. parasiticus 
A. nomius 

Fumonisin Fusarium verticillioides Cereals, corn 
F. culmorum 

Ochratoxin Aspergillus ochraceus Cereals, herbs, oilseeds, figs, 
beef jerky, fruits, and wine Penicillium nordicum 

P. verrucosum 
Patulin Aspergillus terreus Wheat, apples, grapes, 

peaches, pears, apricots, 
olives, cereals 

A. clavatus 
Penicillium carneum 
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Penicillium clavigerum 
P. griseofulvum 

Trichothecenes Fusarium oxysporum Cereals, legumes, fruits, and 
vegetables Fusarium spp. 

Cephalosporium 
Trichoderma 

Zearalenone F. graminearum Cereals, corn 
F. culmorum 
Fusarium spp. 

 
Factors affecting fungal growth and modeling 
Both fungal growth and mycotoxin production fluctuate and are dependent on biological, 
agronomic, geographic and environmental factors (Li et al., 2023). Biological factors involve the 
living organisms and their interactions, such as insect damage and fungal species. Agronomic 
factors can include plant stresses, crop rotation, tillage methods and drying methods. 
Geographical location can be longitude and latitude, and also altitude. Environmental factors can 
include relative humidity, rainfall, temperature and droughts. The impact of these factors are 
different for each crop, fungi and mycotoxin. By monitoring and collecting field data, correlations 
between the factors and mycotoxin contamination can be found. For example, Klem et al. (2007) 
estimated that 48% of  the variation of the content of the mycotoxin  deoxynivalenol (DON) in 
wheat can be attributed to environmental effects (Klem et al., 2007). These correlations between 
influencing factors with the occurrence of the mycotoxin(s) can be collected into a predictive 
model, where agronomic, geographic and environmental factors act as inputs and mycotoxin 
contamination as output. Here the combined factors can give even more complete insights, for 
instance that warm, rainy and humid weather during flowering can increase the probability of 
DON accumulation in oat grains (Hjelkrem et al., 2017). Models can therefore offer insights in 
mycotoxin contamination, which is important for food safety and risk mitigation, agricultural 
management practice decision making and monitoring climate change effects (Damianidis et al., 
2018; Medina et al., 2017).  
 

Different types of models 
Various types of predictive models exist. The main distinction between model types is 
mechanistic or empirical. Mechanistic models simulate the biological processes involved in fungal 
contamination, including plant interactions and mycotoxin formation (Liu et al., 2021). Empirical 
models use statistics and data analysis, a classic method used is logistic regression (Liu et al., 
2018).  
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Each type of model has its benefits and drawbacks. In the case of a mechanistic model, the benefit 
is its ability to operate more easily in changing conditions, such as climate change, as compared 
to empirical models. However, to create a mechanistic model, extensive experimental data and 
research is required to develop the knowledge of the underlying biological processes (Liu et al., 
2018). For empirical modeling a bias can arise from the low mycotoxin concentrations in field and 
monitoring data, which makes it difficult for the model to predict samples with high mycotoxin 
levels (Liu et al., 2021). Furthermore, empirical models need all the input data to be available, to 
be able to run the model, which are not always available. Recently, machine learning models 
have been making their debut in predictive mycology as well. Machine learning can bypass some 
of the drawbacks of the empirical model and even combine with mechanistic models (Liu et al., 
2021).  
 

Report aim 
There has been a growing trend in developing models for predicting mycotoxin contamination. 
In this report currently available pre-harvest prediction models for fungal infection and 
mycotoxin production in grains and tomatoes are reviewed. The goal is to understand which 
predictive models have been created in order to combine or extend these models in the 
remaining of the project. To this end, a literature review has been performed to create an 
overview of the existing mycotoxin and fungal growth prediction models. We will end this report 
on a future outlook and advice for the next steps in the project.  
 

Method 
Literature search 
Existing mycotoxin prediction models are identified via a literature review. The literature review 
is conducted in Scopus and Web of Science. Language and time period is not included as 
restriction. The search is conducted to identify prediction models for mycotoxin production in 
grains, tomatoes and other food products. The search string for Scopus is: TITLE-ABS-
KEY(“mycotoxin” AND “model” AND “food” AND “predict”). The search string for Web of Science 
is: TS=(“mycotoxin” AND “model” AND “food” AND “predict”). No suitable synonyms are 
identified or used. The duplicates are removed and the records are screened based on the 
following exclusion criteria. Records are also removed for lack of predictive modeling, lack of 
detail and for being out of scope.  The records that focused on toxicological and health aspects, 
non-food and cell or microbiological experiments or on post-harvest are considered out of scope. 
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Data extraction and organization 
The final records kept in the scope are subject to full text screening and data extraction and 
organization. This involves capturing key characteristics of studies in a standardized form 
(Schmidt et al., 2021). In this report 12 characteristics are used for the records, which together 
create a structured and informative Excel sheet which enables effective comparison and analysis. 
These key characteristics are explained in the Table 2.  

Table 2. The 12 key characteristics for the data extraction and organization of the literature review records.  

No. Key characteristic Description 

1 Type of article This characteristic indicates the general category or type of 
the article 

2 Multiple models or 
datasets 

Indicates whether the study involved multiple models or 
datasets  

3 Location of study Specifies the geographic location where the study was 
conducted  

4 Type of study Describes the nature and purpose of the study 
5 Amount of samples Record the number of samples or data points included in the 

study 
6 Type of predictive 

modeling 
Specifies the type of predictive modeling technique used  

7 Fungal species Identifies the specific fungal species of interest  
8 Crop or food product Indicates the crop that the study focuses on  
9 The modelled mycotoxin Describes the specific mycotoxin being predicted  
10 Year range Specify the range of years during which the study's data was 

collected 
11 Attributes included in 

model 
Lists the attributes or variables included in the predictive 
model  

12 Future advice or 
implications 

Capture recommendations, implications, or insights 
provided by authors 

 

After carefully organizing the data using the 12 key characteristics, descriptive statistics of the 
relevant articles were used, such as to compare the different predictive fungal models in an 
understandable way. By using statistical tools, we're able to spot trends, differences, and 
similarities that show how different factors play a role in predicting mycotoxin contamination.  
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Results and discussion 
Literature records 
From the literature search 169 records are identified. Of these, 56 duplicates are removed. During 
the first screening a further 52 records are removed based on their title and abstract. The 61 
remaining records are read in full and another 35 records are excluded based on the exclusion 
criteria. A final 26 records are kept for the data extraction and organization. This process is also 
depicted in the PRISMA flow diagram illustrated in Figure 1.  

Figure 1. PRISMA flow diagram of the literature review record selection 
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Descriptive statistics 
The records included from the review are read thoroughly and descriptive statistics are 
performed on the 12 key characteristics. The 26 records are a mix of articles (80.8%), reviews 
(15.4%) and one scientific report (3.8%). 38.4% of records have only one model or dataset, 
therefore primarily multiple models or datasets have been used in previous predictive modeling 
research. Figure 2 presents the geographic origin of the datasets or modeled countries. Three 
reviews included models from over the whole world and the other one review included models 
specific to the African continent.  

Figure 2. Frequency of geographic regions from records in literature review 

 

The year ranges for data collection and modeling varied from the minimum year of 1977 and the 
maximum year of 2100. Certain models focused on the immediate future, while others are more 
focused on predicting decades into the future. These often look at climate change effects on 
mycotoxin contamination.  

The amount of samples or data points included in the records ranged from 310 to 225400. The 
latter existing of geographical grid number multiplied by 100 years for future forecasting. This 
was a common variation in the records. Some of the records mentioned field data, while others 
referenced grid data which was mostly in the tens of thousands of data points. In some papers 
the mycotoxin concentration data was not or hardly described, making it difficult to understand 
what their data existed of and how it might introduce bias.  

The records covered various fungal species and crops, as shown in Figure 3. Two records covered 
a broad array of fungal species and are therefore noted as “many”, another two records did not 
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cover any crop but looked at the fungal growth regardless of crop and are therefore labelled at 
N/A. Tomatoes, feed products, and olives were tied in least frequently modelled commodities. 
This is an important consideration for this project, even though all crops are considered in the 
literature search, available predictive modeling of mycotoxins mostly focused on grains. So future 
research should focus on the other relevant affected commodities, such as tomatoes.  

Figure 3. Bar chart of the count of fungal species and food products that were modelled.  

 

Each study focused on mycotoxin contamination and some even considered multiple mycotoxins. 
The chart in Figure 4 presents the frequency of each mycotoxin covered by the predictive models 
included in the literature review. DON is the most frequent mycotoxin, with aflatoxin as second 
most frequently modelled mycotoxin in the records. 
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Figure 4.  Frequency of mycotoxin types included in predictive models in the literature review records. 

 

Comparison of models 

There were many different types of modeling, with many of the included studies using more than 
one modeling technique. In Table 3 each model is listed and briefly explained. Furthermore, they 
are categorized as empirical (data driven models using observed patterns) or mechanistic (based 
on underlying biological processes). If the model is empirical, it is mentioned if it is machine 
learning technique. Here we can start comparing models and understand the different predictive 
tools available.  

Table 3. Modeling techniques used in the available studies from the literature review. They are classified according 
to type and a brief description is given of the technique from the records.  

Modeling Technique Type Description 
Agro-Meteorological 
Model 

Empirical Incorporates weather radar data for agro-
meteorological predictions. 

Generalized Linear 
Model (GLM) 

Empirical  Links response variables to predictor 
variables for mycotoxin prediction. 

Logistic Regression Empirical Estimates likelihood of mycotoxin presence 
based on input variables. 

Mixed Effect Logistic 
Regression 

Empirical Combines fixed and random effects to 
account for interactions. 
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Bayesian Network Empirical, 
Machine learning 

Models probabilistic dependencies among 
variables for mycotoxin presence 
prediction. 

Decision Trees Empirical, 
Machine learning 

Hierarchical structures for classification and 
regression based on conditions. 

Extreme Gradient 
Boosting (XGB) 

Empirical, 
Machine learning 

Utilizes boosting framework for enhanced 
predictive performance. 

Generalized Boosting 
Model (GBM) 

Empirical, 
Machine learning 

Combines weak learners to form strong 
predictive model. 

Maximum Entropy 
(MaxEnt) 

Empirical, 
Machine learning 

Estimates uniform distribution for 
presence-only data. 

Neural Network Empirical, 
Machine learning 

Mimics human brain functions for pattern 
recognition in mycotoxin prediction. 

Support Vector 
Machine (SVM) 

Empirical, 
Machine learning 

Employs linear and nonlinear models for 
classification and regression tasks. 

Dynamic Simulation 
Model 

Empirical/Mechanistic Forecasts mycotoxin risk by considering 
weather, crop growth stages, and disease 
observations. 

Mechanistic Logistic 
Regression Model 

Empirical/Mechanistic Integrates mechanistic insights with logistic 
regression for mycotoxin prediction. 

Surface Range 
Envelope 

Empirical/Mechanistic Defines habitat suitability and spatial 
distribution for species. 

Growth Kinetic Models Mechanistic Studies mycotoxin growth over time, 
factoring in environmental influences. 

These models all required input variables. The inputs used in the models are combined and 
summarized in Table 4, showing which inputs are the most popular and often used in the existing 
predictive fungal modeling. This allows us to compare the input variables, and see which input 
variables should be considered in future models. Crop type and mycotoxin/fungal spp. are 
relevant for each model, making these basic input variables and therefore they have the highest 
frequency. For this same reason we look towards the next input variables. Temperature, relative 
humidity, preceding crop and rainfall are the four most mentioned input variables after the basic 
variables. Location is the only geographic input variable, but is almost as often used as the top 
four input variables previously listed. 
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Table 4. Input variables for predictive models, their frequency in the records of the literature review and the type of 
input variable it is. This can be agronomic, geographic or environmental/meteorological. Crop type and 
mycotoxin/fungal spp. are basic input variables. 

Input variable Frequency Type of variable 
Crop type 26 Agronomic 
Mycotoxin/fungal spp. 26 Agronomic 
Temperature 14 Environmental/Meteorological 
Relative Humidity 12 Environmental/Meteorological 
Preceding Crop 11 Agronomic 
Rainfall 11 Environmental/Meteorological 
Location 8 Geographic 
Crop health 6 Agronomic 
Crop Phenology 5 Agronomic 
Pest and Disease Control Practices 4 Agronomic 
Wind information 3 Environmental/Meteorological 
Spore Dispersion Data 3 Environmental/Meteorological 
Crop Variety Resistance 2 Agronomic 
Air Pressure 2 Environmental/Meteorological 
Sunshine Duration 2 Environmental/Meteorological 
Flowering Date 2 Agronomic 
Length of time between flowering-harvest 2 Agronomic 
Grain Moisture 2 Agronomic 
Kernel Moisture at Harvest 2 Agronomic 
Cropping System Factors 2 Agronomic 
CO2 Emissions 2 Environmental/Meteorological 
Fertilization Type and Dose 2 Agronomic 
Dew Point 1 Environmental/Meteorological 
Frost 1 Environmental/Meteorological 
Sowing and Harvest Week 1 Agronomic 
Temperature Seasonality 1 Environmental/Meteorological 
Water Activity 1 Environmental/Meteorological 
pH Level 1 Environmental/Meteorological 
Growing Days 1 Agronomic 
Type of Soil 1 Agronomic 
Type of Tillage 1 Agronomic 
Plants per m² 1 Agronomic 
Number of Irrigation Interventions 1 Agronomic 



 

 
14 

 

Meteorological Models 1 Environmental/Meteorological 
Sowing Date 1 Agronomic 
Satellite Data (Netherlands) 1 Environmental/Meteorological 

 
Future advice and implications 
From each study we extracted any future advice and implications mentioned by the authors. This 
section discusses the main themes found. Four themes are found and are described in more 
detail below.  
 
Data and Prediction: 
Weather data is crucial for mycotoxin prediction models, especially before anthesis in case of 
Fusarium spp. (Marzec-Schmidt et al., 2021). Temperature and water activity significantly 
influence all types of fungal growth (Torelli et al., 2012). Just by using weather data, it is possible 
to achieve accurate predictive models (Panagou & Kodogiannis, 2009). Climate change will affect 
the weather, and therefore fungal growth and mycotoxin production (Ejaz et al., 2023). Especially 
aflatoxin contamination will likely increase with climate change (Battilani et al., 2016). Climate 
change can affect environmental inputs, such as increased temperatures and reduced annual 
rainfall. To this end, a drought index has been shown to predict aflatoxin contamination 
(Damianidis et al., 2018).  

Agronomics was less often employed as input variable compared to weather data, besides the 
two basic input variables. In many of the included studies a call was made to also include 
agronomics in the future (Liu et al., 2021; Wang, Bouzembrak, et al., 2022). When agronomics 
was used, the most common were crop variety, mycotoxin/fungal spp., preceding crop, crop 
health and crop phenology (Klem et al., 2007; Li et al., 2023). Agronomics input require a lot of 
information from the agricultural setting the samples come from, making it a more intensive 
input to include.  

Geographical data was often used, in the form of location. This could be only longitude and 
latitude, either in the form of grids or regions, and in some cases even altitude (Battilani et al., 
2016; Skelsey & Newton, 2015). One record used geographic input in a different way, by using 
satellite imaging as input variable (Wang, Liu, et al., 2022). It was found that on its own it only 
leads to an average performing model and should be combined with environmental or agronomic 
inputs.  

Modeling and machine learning: 
One of the important themes for the future of the FoodSafeR project is data and modeling. 
Regression analysis are a classical approach and are still used today (Battilani et al., 2016; Pallez-
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Barthel et al., 2021). However, machine learning is an up and coming field and is also starting to 
be used in prediction of mycotoxins (Castano-Duque et al., 2022). It was found that machine 
learning algorithms worked well in comparison to classic techniques (Liu et al., 2018; Wang, 
Bouzembrak, et al., 2022). Especially neural networks were found to be a promising approach to 
predict mycotoxin contamination of crops (Camardo Leggieri et al., 2021; Klem et al., 2007; 
Pallez-Barthel et al., 2021; Panagou & Kodogiannis, 2009). In the future, more mycotoxin 
prediction could be done with machine learning techniques, alone or in combination with other 
techniques, this would also allow for tailoring of the models on specific situations (Nji et al., 2022) 

Integration 
On both the input and the modeling side, there is a push to combine and integrate various types 
of data and methods. Mostly the integration is about environmental and agronomic input data 
into one model. Other inputs to be integrated are satellite imaging and genetic profiles of fungal 
species and or the food crops they contaminate. The input combinations are found to improve 
mycotoxin prediction accuracy. As one paper put it, the wider the range of inputs, the better the 
prediction (Battilani et al., 2008). On the modeling side, integration of models allows for 
reduction of bias, increase of accuracy and combining the strength of the various methods (Liu 
et al., 2018). Therefore, integration is an important theme, as it can give better decision making 
advice.  

Fusarium spp. and Mycotoxin Behavior: 
Fusarium spp. and its mycotoxins was the most modelled fungal species. Therefore, in this theme, 
a small overview of the most important findings relating to Fusarium spp. and its mycotoxins are 
given. A call is made to conduct yearly Fusarium spp. surveys or field trials to better understand 
their mycotoxins behavior (Landschoot et al., 2013). We already understand how DON 
contamination in wheat is influenced by weather conditions around flowering and close to 
harvest (Hjelkrem et al., 2017). For example wet years and a previous maize crops lead to higher 
concentrations of DON in wheat (Pallez-Barthel et al., 2021).  

For the future, an integration recommendation is made to incorporate Fusarium spp. genetics 
into predictive models as there is great variation between Fusarium spp. (Pallez-Barthel et al., 
2021). Another future advice is related to climate change. Climate change will also affect 
Fusarium spp. and its mycotoxin behavior, we should become more aware of this and prioritize 
research into Fusarium spp. behavior and mycotoxin formation (Ejaz et al., 2023; Liu & Van der 
Fels-Klerx, 2021; Van de Perre et al., 2015).   
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Conclusion 
The goal of this report is to understand what predictive models have been created in order to 
combine and extend on these models in the future of the project. Currently available prediction 
models for fungal infection and mycotoxin production in grains and tomatoes were reviewed. 
This gave insights into the different types of predictive modeling for mycotoxin contamination 
and fungal growth pre-harvest. Most of the models are for wheat and/or maize, unfortunately 
only one model was created for tomatoes. In the future, more research should be done to 
understand mycotoxin contamination and fungal growth on tomatoes. 

The main emphasis of the results is on data, modeling, integration and Fusarium spp. behavior. 
Furthermore, there was a strong push to consider climate change and how it might affect the 
future of food safety Of the models, many are empirical and some are machine learning models 
as well. This was found to give accurate predictions in the implications, especially when 
combining with mechanistic modeling and using agronomic, geographic and environmental 
factors integrated together. The top five most used input variables are temperature, relative 
humidity, preceding crop, rainfall and location, after the basic input variables of crop type and 
mycotoxin/fungal spp. 

In the future, climate change should be considered more, tailor made models for crop, 
geography, fungal species and even stakeholders should be made. Long term data collection 
using field surveys is necessary, preferable with geolocation to allow for future use of satellite 
images to increase the performance of the predictive models. Also integration of agronomic, 
weather and geographic data should be emphasized for improved accuracy This integration is 
also relevant for modeling, different modeling approaches have their strengths and weaknesses; 
a combined approach shows to work well.  

Currently the models for tomatoes are very limited, the major advice from this review is to 
conduct more research towards tomatoes, to collect dedicated data from field over multiple 
years, and to integrate modeling techniques and input variables.  
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